Domů : Technické termíny : Definice rekurzivní funkce

Rekurzivní funkce

Rekurzivní funkce je funkce, která se během provádění sama volá. To umožňuje, aby se funkce několikrát opakovala, na výstupu bude výsledek a konec každé iterace. Níže je uveden příklad rekurzivní funkce.

počet funkcí (celé číslo N)
pokud (N <= 0) návrat "Musí to být kladné celé číslo";
if (N> 9) return "Počítání dokončeno";
else return Count (N + 1);
koncová funkce

Funkce Count () výše používá rekurze počítat z libovolného čísla mezi 1 a 9, na číslo 10. Například Count (1) vrátí 2,3,4,5,6,7,8,9,10. Count (7) vrátí 8,9,10. Výsledek lze použít jako kruhový objezd k odečtení čísla od 10.

Rekurzivní funkce jsou v informatice běžné, protože umožňují programátorům psát efektivní programy pomocí minimálního množství kódu. Nevýhodou je, že pokud nebudou správně napsány, mohou způsobit nekonečné smyčky a další neočekávané výsledky. Například ve výše uvedeném příkladu je funkce ukončena, pokud je počet 0 nebo menší nebo větší než 9. Pokud nejsou ve funkci zahrnuty řádné případy, které zastaví provádění, rekurze se bude opakovat navždy, což způsobí selhání programu, nebo ještě hůře, zavěste celý počítačový systém.

https://TechLib.com/definition/recursivefunction

TechLib - počítačový slovník Tech Lib

Tato stránka obsahuje technickou definici rekurzivní funkce. Vysvětluje ve výpočetní terminologii, co znamená rekurzivní funkce, a je jedním z mnoha technických termínů ve slovníku TechLib.

Všechny definice na webu TechLib jsou napsány tak, aby byly technicky přesné, ale také snadno srozumitelné. Pokud shledáte tuto definici rekurzivní funkce užitečnou, můžete ji odkázat pomocí výše citovaných odkazů.